A quantitative analysis of CO2 stores in the body

Dott. LORENZO GIOSA (1), Dott. MATTIA BUSANA (1), Dott. MATTEO BONIFAZI (1), Dott. MATTEO MARIA MACRÌ (1), Dott. IACOPO PASTICCI (1), Dott. FRANCESCO VASSALLI (1), Dott. FEDERICA ROMITTI (1), Dott. MICHAEL QUINTEL (1), Dott. LUCIANO GATTINONI (1)

(1) University of Göttingen, Department of Anaesthesiology and Critical Care, Robert-Koch-Straße 40, 37075, Göttingen, Germania.

Argomento: Altro

Background: The presence of CO_2 stores in the body has already been discussed in the past, but a quantitative analysis of their amount and of the kinetics of their unloading is lacking in literature. We supposed that lowering $PaCO_2$ by acutely raising alveolar ventilation would set the equilibrium between the plasma and the CO_2 stores to a new level that would force the stores to unload to an extent which is measurable via the VCO₂.

Methods: 14 healthy piglets (24.1±1.8 Kg) were sedated and mechanically ventilated with the following baseline values: alveolar ventilation 2.08 ± 0.53 L/min, PaCO2 44.4±4.65 mmHg and VCO2 126±27.9 ml/min. Alveolar ventilation was then acutely raised up to 4.24 ± 0.19 L/min and kept constant for 48 hours. PaCO₂ and VCO₂ were recorded after 30 minutes and then every 6 hours for 48 hours.

Results: $PaCO_2$ rapidly decreased to 27.3 ± 3.36 mmHg and reached a plateau of 22.5 ± 4.01 mmHg after 30 hours (Figure 1) while VCO_2 rapidly increased to 158 ± 32.4 ml/min and then slowly resettled to the baseline value in 48 hours. Plotting VCO_2 over time and calculating the area under this curve we found that the total amount of CO_2 removed by the ventilation in 48 hours was 18.63 mols. We substracted to this value the CO_2 produced by the metabolism (which we calculated from the baseline VCO_2 assuming a constant VO_2) and we obtained a difference of 2.48 mols (Figure 2). This non-metabolic VCO2 can be ascribed to the CO_2 released by the stores during the equilibration with the new PaCO2.

Conclusions: A large amount of CO_2 is removed from the stores when $PaCO_2$ is acutely lowered. This method of quantification could be of interest when applied to clinical settings such as the extracorporeal CO2 removal in COPD patients.

