Role of different buffers during acute respiratory disorders in septic patients: an in-vitro study.

Sig.ra ANNALISA MAURO (1), Dott.ssa SERENA BRUSATORI (2), Dott. PAOLO BRAMBILLA (2), Dott.ssa ELEONORA CARLESSO (1), Dott.ssa CHIARA FERRARIS FUSARINI (2), Dott. ALBERTO ZANELLA (1)(2), Prof. GIACOMO GRASSELLI (1)(2), Dott. THOMAS LANGER (1)(2), Prof. ANTONIO MARIA PESENTI (1)(2)

 (1) Department of Pathophysiology and Transplantation, University of Milan, Via F. Sforza 35, Milano, Mi, Italia.
(2) Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via Della Commenda 16, Milano, Mi, Italia.

Argomento: Altro

Introduction. According to Stewart's theory, pH variations during acute respiratory disorder are limited by non-carbonic weak acids, whose buffer power depends on their concentration (A_{TOT}) and acid dissociation constant (pKa). Recent studies showed that also Strong Ion Difference (SID) variations have a role in buffering acute Pco₂ changes.^[2]

Aim. Describe acid-base variations induced by *in-vitro* Pco_2 changes in whole blood and isolated plasma of septic patients, compare them with healthy controls and quantify the contribution of different buffers.

Methods. Blood samples of 5 septic patients and 4 controls were tonometered at CO_2 ranging from 2 to 20%. Total non-carbonic buffer power (β) and its components due to SID variation (β_{SID}) and A_{TOT} (β_{Atot}) were calculated via linear regression. ^[1] The pKa and A_{tot} were computed via non-linear regression performed by SAS 9.4 software solving the equation .^[3] **Results.** Pco₂ variations ranged from 18±2 to 127±3 mmHg (Fig.1). Haemoglobin and total protein were lower in patients (10.3±1.0 vs. 14.8±0.8 g/dL, p<0,001 and 4.6±0.3 vs. 7.0±0.5 g/dL, p<0.001, respectively). Septic patients had lower blood and plasma β (19±2 vs. 29±2 mEq/L, p<0.001 and 2±1 vs. 4±1 mEq/L, p=0.005) and blood β_{SID} (15.3±1.8 vs. 23.5±0.7 mEq/L, p<0.001). Blood pKa values were 6.37±0.21 vs. 6.58±0.16 (p=0.139), with A_{TOT} 15.3±3.7 vs. 18.5±1.5 mmol/L (p=0.159) and β_{Atot} 3.8±1.7 vs. 5.3±0.7 (p=0.169), in patients and controls respectively.

Conclusions Septic patients had lower β as compared to controls. This was due both to quantitative reductions in buffers and, possibly, alterations of their function, as suggested by lower pK_a values. In both groups, SID variation (β_{SID}) was the main mechanism limiting pH variations.

Bibliography

^[1] Van Slyke DD J Biol Chem 52:525-570, 1922

^[2] Langer T et al. J Crit Care 30(1):2-6, 2015

^[3] Staempfli HR J Appl Physiol 95:620-630, 2003

Figure 1. Average pH-pCO₂ curves computed from the fittings of individual recordings in blood (A) and plasma (B). Data are presented as mean±SD.